

智能融合终端主控板 SCMB9016RHZB 使用手册

目 录

重要说明:	1
1. 概况	1
1.1 功能和指标	1
1.2 参数配置	1
2. 使用环境	1
3. 硬件接口	2
3.1 MOLEX 接口	3
3.2 MINI USB接口	5
3.3 复位按键	5
3.4 调试串口 Type-c (RS232 协议)	5
3.5 无线测温模块	
3.6 本地通信模块插座(弱电端)	7
3.7 本地通信模块插座(强电端)	8
3.8	9
3.9 485/232 接口	9
3.10 2路以太网接口1	0
3.11 预留模块插座1	1
3.12 远程通信模块插座1	
3.13 按键1	3
3.14 微动限位开关1	3
3.15 市电接线端子1	3
3.16 无线蓝牙1	3
4. 通信	4
4.1 通信协议1	4
4.1.1 网络层协议要求1	4
4.1.2 应用层协议要求1	4
4.2 终端远程通信1	4
4.3 终端本地通信1	4

4.4 软件功能	 14
4.4.1 平台软件	 15
4.4.1 平台软件功能	 15
4.4.2 容器	 15
4.4.3 应用软件管理	 15
5. 故障和处理	 15
6. 售后服务	
附录 A 常见问题及故障分析	17

重要说明:

※※※主控板如果烧写正式镜像后,将不再能烧写测试镜像。

1. 概况

1.1 功能和指标

智能融合终端主控板是智慧物联体系"云管边端"架构的边缘设备控制板,具备信息采集、物联代理及边缘计算功能。终端主控板定位于低压配电物联网核心,采用平台化硬件设计和边缘计算架构,支持就地化数据存储与决策分析。终端主控板采用模块化、可扩展、低功耗、免维护的设计标准,适应复杂运行环境,具有高可靠性和稳定性。

智能融合终端主控板使用 5V 直流供电,整板本体功耗≤10VA,主控板上电、断电、电源电压缓慢上升或缓慢下降,均不误动作,当电源恢复正常后自动恢复正常运行;电源恢复后保存在存储中的数据不丢失,内部时钟正常运行。

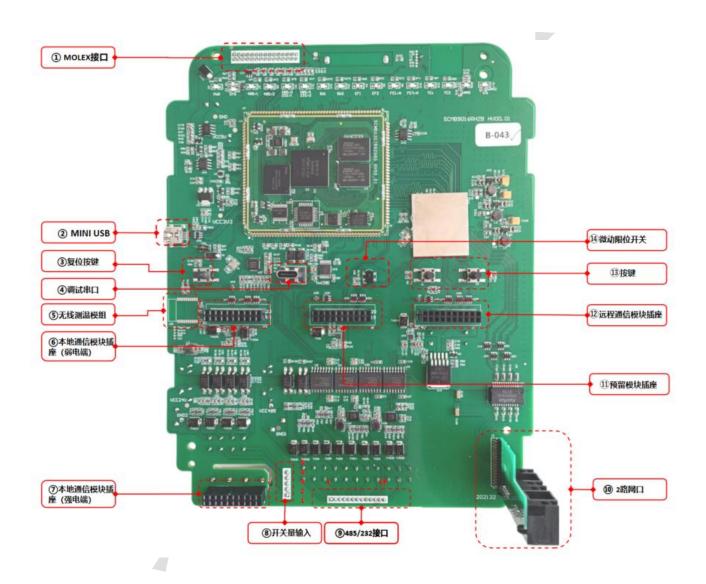
1.2 参数配置

智能融合终端主控板基于"国网芯"SCM701D 主控芯片设计,采用 Cortex-A7 架构的单芯 4 核处理器、主频最高可达 1.0GHz,外围集成 2GB DDR3 和 8GB FLASH 存储器,为硬件平台 化和软件定义终端奠定了基础,同时采用嵌入式 Linux 操作系统(Linux4.14),搭建了一个可靠 性高、速度快、存储容量大、开放性强的智能终端平台。

2. 使用环境

环境温度要求:

使用环境温度为-40~70度。


海拔高度要求:

可在海拔 0~4000 米的范围内正常工作;

对于安装在海拔高度超过 1000 米的终端满足标准 GB/T11022-2011 第 2.3.2 条要求的耐压测试规定执行。

3. 硬件接口

融合终端主控板对外接口包括 Molex 接口、MINI USB 接口、调试串口(TYPE-C 接口 RS232 协议)、载波模块插座(弱电端)、载波模块插座(强电端)、4 路开关量输入接口、485/232 接口、2 路以太网接口、预留模块插座、远程通信模块插座、市电接线端子和无线蓝牙模块。

备注:图片仅为示意。

3.1 MOLEX 接口

此 Molex 接口,提供产品对内逻辑电平通讯接口及供电电源接口。

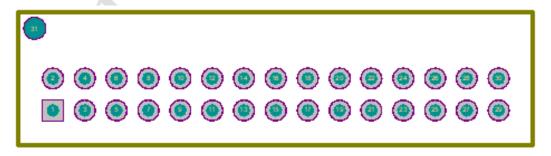


表1 Molex接口

编号	名称	I/0	Level	描述
1	GND	Р		参考地信号,比其它信号引脚的插针
2	GND	Р		稍长 0.5mm
3	VCC5V	Р	5V	DC5V 电源,由交采板输出;
4	VCC5V	Р	5V	输入电压: DC5V±0.2V;
5	VCC5V	Р	5V	纹波: ≤50mV; <mark>额定输入</mark> 电流: 5A;
6	VCC5V	Р	5V	峰值电流: 6A
7	USB_D+	I/0	3V3	USB 信号 D+
8	USB_D-	I/0	3V3	USB 信号 D-
9	GND	Р		参考地信号
10	GPIO_5V_DET	I	3V3	主电源掉电监测,主控板侧弱上拉
11	CF1	Ι	3V3	有功脉冲(高电平 3.3V 点亮)
12	SPI_CLK	0	3V3	符合 SPI 通信协议, CLK 时钟信号
13	CF2	I	3V3	无功脉冲(高电平 3. 3V 点亮)
14	SPI_CS	0	3V3	符合 SPI 通信协议,CS 片选
15	预留	(预留
16	SPI_MISO	Ι	3V3	符合 SPI 通信协议,MISO 数据
17	预留			预留
18	SPI_MOSI	0	3V3	符合 SPI 通信协议,MOSI 数据
19	GPIO_RTC_INT	0	3V3	实时时钟秒脉冲输出
20	GPIO_CT_CTR	0	3V3	交采板 CT 状态控制引脚, 主控板侧弱上拉
21	GPIO_JC_RST	0	3V3	交采板复位引脚, 主控板侧弱上拉
22	预留			预留
23	GND	Р		参考地信号
24	GND	Р		参考地信号
25	YX1	0		遥信 1

26	YX2	0	——	遥信 2
27	YX3	0		遥信 3
28	YX4	0		遥信 4
29	GND	Р		参考地信号,比其它信号引脚的插针
30	GND	Р		稍长 0.5mm

I=Input, O=Output, P=Power

输入输出均相对于主控板而言。

3.2 MINI USB 接口

此 MINI_USB 接口,提供产品对外镜像烧录接口,兼容 USB2.0 通信协议,支持 OTG 模式。 表2 MINI USB接口

编号	名称	I/0	描述
1	VBUS	Р	USB VBUS 接口
2	D-	I/0	USB 差分接口
3	D+	I/0	USB 差分接口
4	ID	I	OTG USB接口 ID信号
5	GND	Р	参考地信号

注:

I=Input, O=Output, P=Power

输入输出均相对于主控板而言。

3.3 复位按键

此按键提供主控复位功能。

3.4 调试串口 Type-c(RS232 协议)

此 Type-c 接口(RS232 协议),提供产品对外串口调试功能。

表3 Type-c接口

编号	名称	I/0	描述
1	GND	Р	参考地信号
2			

第 5 页 共 17 页

3			
4			
5	——		——
6	RX_232	Ι	符合 RS232 通信协议,RXD 信号
7	TX_232	0	符合 RS232 通信协议,TXD 信号
8			
9			
10	——		+/
11	——		
12	GND	Р	参考地信号
13	GND	Р	参考地信号
14	·——		
15			
16			
17			
18	RX_232	I	符合 RS232 通信协议,RXD 信号
19	TX_232	0	符合 RS232 通信协议,TXD 信号
20			
21	+-		
22			
23			——
24	GND	Р	参考地信号

I=Input, O=Output, P=Power

输入输出均相对于主控板而言。

3.5 无线测温模块

无线模块采用低功耗无线测温模块 SCME90092G4A1, 具有数据透传功能。

3.6 本地通信模块插座(弱电端)

此载波模块插座,提供产品扩展载波模块功能,此插座为弱电逻辑通讯接口。

表 4 本地通信模块接口引脚定义

编号	名称	I/0	Level	描述
1	GND	P		
2	GND	Р		参考数字地
3	VCC5V	Р	5V	直流电源输入,电压范围 5V±0.2V,电压
4	VCC5V	Р	5V	纹波不大于 50mV,输出电流不小于 1A。
5				
6				
7	D+	I/0	3. 3V	
8	D-	I/0	3. 3V	USB2.0 接口,可用于载波通信。
9	/	人		
10	-//			
11	ReSET	0	3. 3V	载波模块复位信号,低有效
12	▼ +			
13		-		
14	$\lambda + I$			
15	TD+			
16	TD-			以不网络口 可用工免票券体格口
17	RD+			以太网接口,可用于宽带载波接口。
18	RD-			
19	GND	Р		参考数字地
20	GND	Р		参考数字地

注:

I=Input, O=Output, P=Power

3.7 本地通信模块插座(强电端)

此**本地通信模块插座**(强电线端),提供产品扩展载波模块功能,此插座为强电线端接口。

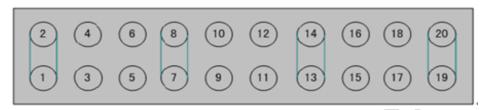


表 5 本地通信模块插座 (强电线端)

编号	名称	I/0	描述
1	VA		三相电 A 相
2	VA		三相电 A 相
3			
4			
5			7 14/7
6			
7	VB		三相电 B 相
8	VB		三相电 B 相
9			
10			
11	<u></u>		
12			
13	VC		三相电 C 相
14	VC		三相电 C 相
15			
16			
17			
18			
19	VN		三相电N相

	20	VN		三相电N相
--	----	----	--	-------

3.8 开关量输入接口

表 6 开关量输入接口引脚定义

编号	名称	I/0	Level	描述
1	遥信 I	Ι		开关量输入接口
2	遥信II	Ι		开关量输入接口
3	遥信Ⅲ	Ι		开关量输入接口
4	遥信IV	Ι		开关量输入接口
5	遥信公共端	Ι		开关量输入接口, 公共端

注:

I=Input, O=Output, P=Power

输入输出均相对于主控板而言。

3.9 485/232 接口

表7 485/232接口引脚定义

编号	名称	I/0	Level	描述
1	CF1_1	0		脉冲输出,有功
2	CF2_1	0		脉冲输出,无功
3	RTC_INT_1	0		脉冲输出,秒脉冲
4	GND1	Р		数字隔离地
5	485 串口 I 端 A	I/0		符合 RS485 通信协议,为差分端口 A
6	485 串口 I 端 B	I/0		符合 RS485 通信协议,为差分端口 B
7	485 串口 II 端 A	I/0		符合 RS485 通信协议,为差分端口 A

8	485 串口Ⅱ端 B	I/0		符合 RS485 通信协议,为差分端口 B
9	485 串口Ⅲ端 A/232 串	I/0		符合 RS485 通信协议,为差分端口 A
9	口Ⅰ接收			符合 RS232 通信协议
10	485 串口Ⅲ端 B	I/0		符合 RS485 通信协议,为差分端口 B
10	232 串口 I 发送	1/0		符合 RS232 通信协议
11	485 串口IV端 A/232 串	I/0		符合 RS485 通信协议,为差分端口 A
11	口Ⅱ接收			符合 RS232 通信协议
10	485 串口IV端 B/232 串	I/0	——	符合 RS485 通信协议,为差分端口 B
12	口Ⅱ发送			符合 RS232 通信协议
13	GND1	Р		数字隔离地

I=Input, O=Output, P=Power

输入输出均相对于主控板而言。

3.10 2 路以太网接口

提供产品对外以太网通讯接口,支持 10/100/1000 Mbps 自适应,下网口对应网口 1,上网口对应网口 2。

表8 以太网引脚定义

编号	名称	I/0	描述
1	MXO_P	I/0	满足标准以太网通讯协议
2	MXO_N	I/0	满足标准以太网通讯协议
3	MX1_P	I/0	满足标准以太网通讯协议
4	MX2_P	I/0	满足标准以太网通讯协议
5	MX2_N	I/0	满足标准以太网通讯协议
6	MX1_N	I/0	满足标准以太网通讯协议
7	MX3_P	I/0	满足标准以太网通讯协议
8	MX3_N	I/0	满足标准以太网通讯协议

3.11 预留模块插座

预留模块接口应采用 2×10 双排插针作为连接件,其引脚示意图如下图所示,引脚定义说明见表 9。

表9 预留模块接口引脚定义

编号	名称	I/0	Level	描述		
1	GND	Р		参考数字地		
2	GND	Р		参考数字地		
3	VCC5V	Р	5V	* * * * * * * * * * * * * * * * * * * *		
4	VCC5V	Р	5V			
5	预留		77	预留		
6	预留		+	预留		
7	D+	I/0		满足标准 USB 通讯协议,DP		
8	D-	I/0		满足标准 USB 通讯协议,DM		
9	预留		>	预留		
10	预留	\prec		预留		
11	预留 IO	1/0	3. 3V	预留		
12	预留 IO	I/0	3. 3V	预留		
13	预留			预留		
14	预留			预留		
15	TXRX4P_A					
16	TXRX4M_A			以太网接口预留		
17	TXRX4P_B			以及四按口坝田		
18	TXRX4M_B					
19	GND	Р		参考数字地		
20	GND	Р		参考数字地		

3.12 远程通信模块插座

远程通信模块接口应采用 2×10 双排插针作为连接件, 其引脚示意图如下图所示, 引脚定义说明见表 10。

表10 远程模块接口引脚定义

编号	名称	I/0	Level	描述	
1	GND	Р	——	参考数字地	
2	GND	Р		参考数字地	
3	VCC4V	Р	4V	通信模块电源输入,4V±0.2V 单 4G 模块: 正常工作电流 500mA,电压纹波小于 30mV;最大电流 2A,可持续 1ms。	
4	VCC4V	Р	4V	双 4G 模块: 正常工作电流 1A,电压纹波小于 30mV, 最大电流 3A,可持续 1ms。	
5	预留			预留	
6	预留			预留	
7	D+	I/0		满足标准 USB 通讯协议,DP	
8	D-	1/0	_	满足标准 USB 通讯协议,DM	
9	预留		7	预留	
10	预留			预留	
11	预留			预留	
12	CARD_IN	Ι	3. 3V	在位信号模块侧接地。主板上拉 (3.3V/TTL)	
13	SDA	I/0	3. 3V	IIC:SDA	
14	SCL	0	3. 3V	IIC:SCL	
15	TXRX4P_A				
16	TXRX4M_A			N 수 Iou 수 다 쪼리	
17	TXRX4P_B			以太网接口预留	
18	TXRX4M_B				
	_				

19	GND	Р	 参考数字地
20	GND	Р	 参考数字地

I=Input, O=Output, P=Power

输入输出均相对于主控板而言。

3.13 按键

按键 S1 是 485串口Ⅲ和 232 串口 I 切换按键,指示灯 SW1 亮表明此时工作在 485 状态,灯灭表明此时工作在 232 状态。

按键 S2 是 485串口IV和 232 串口 II 切换按键,指示灯 SW2 亮表明此时工作在 485 状态,灯灭表明此时工作在 232 状态。

3.14 微动限位开关

微动限位开关,用于监测终端上盖的开合状态。

3.15 市电接线端子

此市电接线端子,提供产品内主控板与底板三相电接口。

编号 描述 名称 I/0VA 三相电A相 1 2 3 VB 三相电B相 4 5 VC 三相电C相 6 7 VN 三相电N相 8

表 11 市电接线端子引脚定义

3.16 无线蓝牙

蓝牙模块采用低功耗蓝牙模块 SC3120H, 具有数据透传功能, 提供产品现场维护通信接口。

4. 通信

4.1 通信协议

4.1.1 网络层协议要求

- a) 对于使用以太网进行通信的终端,其所使用的 TCP/IP 协议中的网络层 IP 协议同时支持 IPv4 和 IPv6 相关要求;
 - b) 终端远程通信使用一个无线通信通道,业务和管理数据流使用不同端口号。

4.1.2 应用层协议要求

终端本地通信协议支持 DL/T 645、DL/T 698. 45、Q/GDW 1376. 1、Q/GDW 1376. 2、Modbus 等,可以满足与智能电容器、剩余电流动作保护器等设备的通信要求;终端与主站通信规约满足运检三(2017)6号文 DL/T634. 5 101、DL/T634. 5 104 实施细则的要求。

4.2 终端远程通信

- a) 业务数据流符合运检三〔2017〕6 号文 DL/T634.5 101、DL/T634.5 104 实施细则,传输 遥信、遥测、遥脉等业务相关数据;
- b) 管理数据流可通过 配电物联〔2020〕8 号文规定的 MQTT 协议,传输设备管理、容器管理和应用软件管理等管理相关数据。

4.3 终端本地通信

- a) 本地通信支持 RS-232、RS-485、电力线载波、微功率无线等方式;
- b) RS-232/RS-485 接口传输速率可选用 1200bit/s、2400bit/s、4800bit/s、9600bit/s、19200bit/s;
- c) 以太网接口传输速率为 10M /100M/1000M bit/s 自适应。

4.4 软件功能

终端软件由平台软件和应用软件组成。

4.4.1 平台软件

4.4.1 平台软件功能

- a) 平台软件支持设置/查询本地时间和时区;
- b) 平台软件支持终端网络配置的修改和查询;
- c) 平台软件支持对软件包合法性校验。软件包被破坏后,程序启动失败;
- d) 平台软件支持设备软件、容器、应用软件的远程升级,同时支持断点续传;
- e) 平台软件支持设置和查看系统的 CPU 占用率、内存占用率、内部存储占用率等告警门限:
- f) 平台软件支持监测系统异常上报,异常信息包括但不限于设备 CPU 占用率越限、设备内存越限、设备存储空间不足、设备复位等。

4.4.2 容器

- a) 平台软件提供分配容器运行的 CPU 核数量、内存、存储资源、接口资源的功能;
- b) 平台软件支持容器运行管理,包括容器启动、停止等;
- c) 平台软件支持容器监控功能,包括容器重启、CPU 占用率、内存使用率、存储资源越限等情况。存储资源越限、容器重启上报告警,CPU 占用率和内存占用率越限上报告警并重启容器;
- d) 平台软件支持容器升级,升级过程中自动停止容器中应用软件的运行,容器升级完成后应用软件自动恢复正常运行。

4.4.3 应用软件管理

- a) 平台软件支持应用软件的启动、停止、安装、卸载等功能;
- b) 平台软件支持查看应用软件的 CPU 占用率、内存占用率:
- c) 平台软件支持监测应用软件异常的功能,包括应用软件重启、CPU 占用率超限、内存使用率超限。CPU 占用率超限和内存使用率超限时,上报告警并重启应用软件。

5. 故障和处理

故障和处理见附录 A 常见问题及故障分析。

6. 售后服务

本产品在用户完全遵守说明规定要求、使用方法正确并在铅封完好的条件下,保修期为一年,终身维护。

附录 A 常见问题及故障分析

- 1.加电后所有指示灯都不亮? 故障原因:
- a)电源连接错误;
- b)供电不正常。

解决办法:

- a)检测电源线连接是否良好;
- b)用万用表测量接入电压是否正常。
- 2.4 G模块无法连通主站? 故障原因:
- a)没有无线公网;
- b)SIM 没有安装;
- c)IP、端口设置错误
- d)天线接触不良。

解决办法:

- a)用手机或其它通信设备检查 4G 信号强度;
- b)检查 SIM 卡是否已安装并且接触良好;
- c)检查 IP、端口设置是否正确,若错误,更改正确。
- d)检查天线是否安装良好并且阻抗匹配。
- 3.232、485功能异常?

故障原因:线路接线不正确。

解决办法:检查线路,更正错误接线。

扫一扫关注我们

北京智心微电子科技有限公司 BEIJING SMARTCHIP MICROELECTRONICS TECHNOLOGY COMPANY LIMITED

♥ 地址:北京市昌平区南邵镇凯创路智能电网大厦

■ 电话: 010-52615666 ● 传真: 010-52615239 ■ 邮编: 102200

